LM380
Audio Power Amplifier

General Description
The LM380 is a power audio amplifier for consumer application. In order to hold system cost to a minimum, gain is internally fixed at 34 dB. A unique input stage allows inputs to be ground referenced. The output is automatically self centering to one half the supply voltage.

The output is short circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, small servo drivers, power converters, etc.

Features
- Wide supply voltage range
- Low quiescent power drain
- Voltage gain fixed at 50
- High peak current capability
- Input referenced to GND
- High input impedance
- Low distortion
- Quiescent output voltage is at one-half of the supply voltage
- Standard dual-in-line package

A selected part for more power on higher supply voltages is available as the LM384. For more information see AN-69.

Connection Diagrams
(Dual-In-Line Packages, Top View)

Order Number LM380N
See NS Package Number N14A

Order Number LM380N-8
See NS Package Number N08E
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td></td>
<td>22V</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Peak Current</td>
<td></td>
<td>1.3A</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Package Dissipation 14-Pin DIP (Note 7)</td>
<td></td>
<td>8.3W</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Package Dissipation 8-Pin DIP (Note 7)</td>
<td></td>
<td>1.67W</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Input Voltage</td>
<td></td>
<td>±0.5V</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td>-65˚C to +150˚C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics (Note 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{OUT(RMS)}}$</td>
<td>Output Power</td>
<td>$R_L = 8\Omega$, THD = 3% (Notes 4, 5)</td>
<td>2.5</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>A_V</td>
<td>Gain</td>
<td></td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>V/V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage Swing</td>
<td>$R_L = 8\Omega$</td>
<td>14</td>
<td></td>
<td></td>
<td>V_{pp}</td>
</tr>
<tr>
<td>Z_{IN}</td>
<td>Input Resistance</td>
<td></td>
<td>150k</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td>(Notes 5, 6)</td>
<td>0.2</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>(Note 3)</td>
<td>38</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>V_S</td>
<td>Supply Voltage</td>
<td></td>
<td>10</td>
<td>22</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
<td>$P_{\text{OUT}} = 2W$, $R_L = 8\Omega$</td>
<td>100k</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent Supply Current</td>
<td></td>
<td>7</td>
<td>25</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>V_{OUTQ}</td>
<td>Quiescent Output Voltage</td>
<td></td>
<td>8</td>
<td>9.0</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>I_{BIAS}</td>
<td>Bias Current</td>
<td>Inputs Floating</td>
<td>100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short Circuit Current</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: $V_S = 18V$ and $T_A = 25^\circ C$ unless otherwise specified.

Note 3: Rejection ratio referred to the output with $C_{\text{BYPASS}} = 5 \mu F$.

Note 4: With device Pins 3, 4, 5, 10, 11, 12 soldered into a 1/16” epoxy glass board with 2 ounce copper foil with a minimum surface of 6 square inches.

Note 5: $C_{\text{BYPASS}} = 0.47 \mu F$ on Pin 1.

Note 6: The maximum junction temperature of the LM380 is 150˚C.

Note 7: The package is to be derated at 15˚C/W junction to heat sink pins for 14-pin pkg; 75˚C/W for 8-pin.
Heat Sink Dimensions

Staver Heat Sink #V-7
Staver Company
41 Saxon Ave.
P.O. Drawer H
Bayshore, NY 11706
Tel: (516) 666-8000
Copper Wings
2 Required
Soldered to
Pins 3, 4, 5,
10, 11, 12
Thickness 0.04
Inches

Typical Performance Characteristics

Maximum Device Dissipation vs Ambient Temperature

Note: 2 oz. copper foil, single-sided PC board.

Device Dissipation vs Output Power — 4Ω Load

Device Dissipation vs Output Power — 8Ω Load

Device Dissipation vs Output Power — 16Ω Load

www.national.com
Typical Performance Characteristics (Continued)

Power Supply Current vs Supply Voltage

Total Harmonic Distortion vs Frequency

Output Voltage Gain and Phase vs Frequency

Total Harmonic Distortion vs Output Power

Device Dissipation vs Output Power

Supply Decoupling vs Frequency

Typical Applications

Phono Amplifier

Bridge Amplifier
Typical Applications (Continued)

Intercom

Phase Shift Oscillator

*S FOR STABILITY WITH HIGH-CURRENT LOADS

DS099977-10

DS099977-11

www.national.com
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.